The Production and Dissipation of Compensated Thermohaline Variance by Mesoscale Stirring
نویسندگان
چکیده
Temperature–salinity profiles from the region studied in the North Atlantic Tracer Release Experiment (NATRE) show large isopycnal excursions at depths just below the thermocline. It is proposed here that these thermohaline filaments result from the mesoscale stirring of large-scale temperature and salinity gradients by geostrophic turbulence, resulting in a direct cascade of thermohaline variance to small scales. This hypothesis is investigated as follows: Measurements from NATRE are used to generate mean temperature, salinity, and shear profiles. The mean stratification and shear are used as the background state in a high-resolution horizontally homogeneous quasigeostrophic model. The mean state is baroclinically unstable, and the model produces a vigorous eddy field. Temperature and salinity are stirred laterally in each density layer by the geostrophic velocity and vertical advection is by the ageostrophic velocity. The simulated temperature–salinity diagram exhibits fluctuations at depths just below the thermocline of similar magnitude to those found in the NATRE data. It is shown that vertical diffusion is sufficient to absorb the laterally driven cascade of tracer variance through an amplification of filamentary slopes by small-scale shear. These results suggest that there is a strong coupling between vertical mixing and horizontal stirring in the ocean at scales below the deformation radius.
منابع مشابه
Finescale Structure of the T–S Relation in the Eastern North Atlantic
Distributions of temperature (T ) and salinity (S) and their relationship in the oceans are the result of a balance between T–S variability generated at the surface by air–sea fluxes and its removal by molecular dissipation. In this paper the role of different motions in setting the cascade of T–S variance to dissipation scales is quantified using data from the North Atlantic Tracer Release Exp...
متن کاملEffective Diffusivity in Baroclinic Flow
Large-scale chaotic stirring stretches tracer contours into filaments containing fine spatial scales until smallscale diffusive processes dissipate tracer variance. Quantification of tracer transport in such circumstances is possible through the use of Nakamura’s ‘‘effective diffusivity’’ diagnostics, which make clear the controlling role of stirring, rather than small-scale dissipation, in lar...
متن کاملOn the Robustness of the Interdecadal Modes of the Thermohaline Circulation
Ocean models in box geometry forced by constant surface fluxes of density have been found to spontaneously generate interdecadal oscillations of the thermohaline circulation. This paper analyzes the sensitivity of these oscillations to various physical effects, including the presence of mesoscale turbulence, various thermal surface boundary conditions, and the presence of wind forcing or bottom...
متن کاملBlack Sea thermohaline properties: Long‐term trends and variations
The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatol...
متن کاملEddy stirring in the Southern Ocean
[1] There is an ongoing debate concerning the distribution of eddy stirring across the Antarctic Circumpolar Current (ACC) and the nature of its controlling processes. The problem is addressed here by estimating the isentropic eddy diffusivity from a collection of hydrographic and altimetric observations, analyzed in a mixing length theoretical framework. It is shown that, typically, is suppres...
متن کامل